

0040-4039(95)02366-6

Total Synthesis of Forskolin - Part III# Studies related to an Asymmetric Synthesis

Daniel Calvo, Marc Port, Bernard Delpech, and Robert Lett*

Unité Mixte CNRS - Roussel Uclaf 93235 Romainville (France)

Abstract: A modification of the Corey CBS methodology for the asymmetric reduction of the dienone 3_A affords the dienol 4_A with an $ee \approx 98\%$ (92% yield). The intramolecular Diels-Alder reaction of the derived tetrolate 7 yields the tricyclic lactone 8 (48-56%) with no significant loss of ee (less than 1%), thus demonstrating the feasibility of a total synthesis of forskolin in enantiomerically pure form according to our route. The present synthesis of the optically active lactone 8 (ee=98%) is the shortest and the most efficient.

Three total syntheses of (\pm) forskolin 1 have already been achieved by Ziegler ¹, Ikegami ² and Corey ³ and involve a common key-intermediate 2; we also disclosed the completion of our synthesis of (\pm) 1 in the two accompanying communications ⁴.

Corey and coworkers first developed a route for a highly enantioselective synthesis of 2, via the asymmetric reduction of the dienone 3_A into the (S) alcohol 4_A with 20 mol% of (R)-oxazaborolidine 5 and 0.6 equivalent of BH₃-THF in THF at 35°C; the dienol 4_A (ee=90%) was further converted into the tricyclic lactone 6_A , obtained in optically pure form by recrystallization (ee>99%) 5a . A similar enantioselective route to 6_B was also later reported by Corey 5b .

Kanematsu et al. took advantage of the Corey methodology to prepare the optically active key-compound 2 from 4_A (ee=90%) 6^a , via their allenyl ether intramolecular Diels-Alder strategy 6^b . More recently, Lallemand and coworkers described the PLE catalyzed resolution of (\pm)-1-hydroxy- β -ionone acetoacetate as yielding the required (S) enantiomer (ee=95%) 7^a , and they recently disclosed its possible conversion into 2^{7^b} .

dedicated to the memory of our coworker Daniel Calvo, deceased September 2nd, 1993.

We also checked the feasibility of an asymmetric total synthesis of forskolin, by the scheme we achieved in our group. Thus, after some experimentation, we reproducibly prepared the optically active (S) dienol 4 A (ee=90%) according to the Corey procedure 5,8 , or by the trimethylboroxine modification 9 , and (S) 4 A was further converted into the tetrolate 7 (tetrolic acid/DCC/DMAP, CH₂Cl₂, r. tp.). No appreciable loss of ee was found to occur either in the esterification or in the harsh conditions of the Diels-Alder reaction (180°C, 14-24h) 4 , since the enantiomeric excess of the optically active lactone 8 was also 90% (the ee were determined by GLC with a chiral capillary column and the ee precision secured to be better than 1%) 10 , 11 . More recently, we could improve the enantiomeric excess of 4 A to 98% 11 , 12 , by a slight modification of the Corey procedure with catecholborane as the reagent 13 , but associated with the catalyst prepared from the (R) diphenylprolinol and trimethylboroxine for simplification, instead of the usual n -butyl boron related oxazaborolidine catalyst 13 .

Acknowledgements: We thank Dr P. Potier for his interest in this work and the Département des Recherches et Applications Physiques at ROUSSEL UCLAF (Romainville) for its contribution.

References and notes:

- (a) Ziegler, F. E.; Jaynes, B. H.; Saindane, M. T. Tetrahedron Lett. 1985, 26, 3307-3310. (b) Ziegler, F. E.; Jaynes, B. H. Tetrahedron Lett. 1987, 28, 2339-2342. (c) Ziegler, F. E.; Jaynes, B. H.; Saindane, M. T. J. Am. Chem. Soc. 1987, 109, 8115-8116. (d) Ziegler, F. E.; Jaynes, B. H. Tetrahedron Lett. 1988, 29, 2031-2032.
- 2. Hashimoto, S.; Sakata, S.; Sonegawa, M.; Ikegami, S. J. Am. Chem. Soc. 1988, 110, 3670-3672.
- 3. Corey, E. J.; Da Silva Jardine, P.; Rohloff, J. C. J. Am. Chem. Soc. 1988, 110, 3672-3673.
- Delpech, B.; Calvo, D.; Lett, R. Tetrahedron Lett., accompanying notes (part I and part II).
- (a) Corey, E. J.; Da Silva Jardine, P.; Mohri, T. Tetrahedron Lett 1988, 29, 6409-6412. (b) Corey, E. J.; Da Silva Jardine, P. Tetrahedron Lett 1989, 30, 7297-7300.
- (a) Nagashima, S.; Kanematsu, K. Tetrahedron: Asymmetry, 1990, 1, 743-749.
 (b) Kanematsu, K.; Nagashima, S. J. Chem. Soc., Chem. Commun. 1989, 1028-1029.
- (a) Lallemand, J.-Y.; Leclaire, M.; Levet, R.; Aranda, G. Tetrahedron: Asymmetry, 1993, 4, 1775-1778. (b) Leclaire, M.; Pericaud, F.; Lallemand, J. Y. J. Chem. Soc., Chem. Commun. 1995, 1333-1334.
- (a) Corey, E. J.; Bakshi, R. K.; Shibata, S; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925-7926. (b) Corey, E.J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. 1988, 53, 2861-2863.
- (a) Mathre, D. J.; Jones, T. K.; Xavier, L. C.; Blacklock, T. J.; Reamer, R. A.; Mohan, J. J.; Jones, E. T. T.; Hoogsteen, K.; Baum, M. W.; Grabowski, E. J. J. J. Org. Chem. 1991, 56, 751-762. b) Mathre, D. J.; Thompson, A. S.; Douglas, A. W.; Hoogsteen, K.; Carroll, J. D.; Corley, E. G.; Grabowski, E. J. J. Org. Chem. 1993, 58, 2880-2888.
- First disclosed by Lett, R. (a) Ninth French-Japanese Symposium on Medicinal and Fine Chemistry, Sapporo (May 18-21, 1992) (b) Seventh Nozaki Conference, Yokohama (May 29-30, 1992). (c) Third French-American Chemical Society, Aussois (June 15-18, 1992). (d) Delpech, B.; Calvo, D.; Lett, R. 18th IUPAC Symposium on the Chemistry of Natural Products, Strasbourg (August 30-September 4, 1992). (e) Delpech, B.; Calvo, D.; Lett, R. French Chemical society, JCO 92, Palaiseau (September 9-11, 1992).
- 11. The enantiomeric purity was determined by GLC with a chiral capillary column under the following conditions: He carrier gas; injector split 1/50; detector FID; column isothermal; injector: 200°C; detector: 200°C; sample size: 0.3-0.5 μl of a 3% solution in toluene. The integration parameters were secured with the racemic compounds and precision for the measurements of the peaks area for the *R* and *S* enantiomers checked to be better than ± 0.5%.
 - **4**_A acetate (from **4**_A with Ac₂O/pyridine/toluene/100°C or Ac₂O/DMAP/CH₂Cl₂/20°C): Cyclodex-B (30m / 0.25mm; film thickness 0.25μm); inlet pressure 13 psi; column: 120°C.
 - lactone 8: capillary column Chiraldex-B PH (β -cyclodextrin, permethylated hydroxypropyl) (30m / 0.32mm); inlet pressure: 20 psi; column: 175°C
 - Determinations of ee were also done by ^{1}H NMR (CDCl₃, 250, 300 or 400 MHz), but with lower accuracy, on the (R) and (S) α -Methoxy- α -trifluoromethylphenylacetic acid esters of ^{4}A , and for 8 at 400 MHz with a molar ratio Eu(tfc)₃/8 = 0.5.
- 12. Delpech, B.; Calvo, D.; Lett, R. French Chemical Society, JCO 95, Palaiseau (September 12-15, 1995), A-40.
- (a) Corey, E. J.; Bakshi, R. K. Tetrahedron Lett. 1990, 31, 611-614. (b) Corey, E. J.; Link, J. O. Tetrahedron Lett. 1992, 33, 4141-4144.